
ARduino SIGnal dcc DECoder

The DCC decoder for
Arduino UNO/MEGA
for all light signals for everybody

(with a DCC central station)

Author: Nico Teering

July 2019

Arsigdec version: 3.0

Document version: 3.0-UK

Info: Info@Arcomora.com

WWW: www.Arcomora.com/Arsigdec

2

Introduction
The use of an Arduino microcomputer in model railroad construction is well known to many.
However, the actual use of the computer is for most people a bridge too far. Programming or making simple
adjustments to a program is seen as a big problem.
As a result, the Arduino remains the domain of a very limited group with more technical knowledge.
That is a pity, because with the Arduino you can automate your whole model railway cheaply.
To make the Arduino accessible for everyone, I have made a program for a light signal DCC decoder based on an
Arduino (ARSIGDEC). With the ARSIGDEC, all conceivable signals can be applied to your layout. The only limitation
is that a maximum of 8 LEDs per signal can be used and also a maximum of 10 signal images per signal.
With ARSIGDEC it is no longer necessary to write just one letter of Arduino code.
There is a version for the MEGA2560 and the UNO.
The Uno version has a maximum of 8 signals or 16 LEDs in total.
The MEGA version has a maximum of 30 signals or 59 leds in total.
The DCC/Powershield can be used for both Arduinos.

As with any other DCC decoder, the ARSIGDEC still has to be configured.
This configuration is usually wrongly called programming. To avoid confusion we use the term programming to
write the Arduino code and configure the term to execute the program. In this configuration, the servo's and
accessory's are set up.

The ARSIGDEC operates in two different 'states'.
In config mode, the signals can be 'set' using one character commands from the keyboard. The ARSIGDEC
communicates with the computer via an USB cable.
No DCC signals are needed for this.
By means of a specific command ('E'), the ARSIGDEC switches to the operating state.
In the operating state, the signals are controlled with the DCC signal. A USB cable is no longer needed.

Why an Arduino?
The main reason is the price. Take a look at the price:
- An (cloned) Arduino doesn't have to cost more than €3,-.
- Additional separate components for processing the DCC signal cost €2.50.

Another reason is the ease with which everything can be configured. This is done interactively and does not
require a DCC central unit or any hassle with vague CVs.

The installation of all software is very user-friendly. All the required software is installed at once. Uploading the
decoder program to the Arduino is also almost entirely automatic.
See the installation manual for more information.

3

All ARSIGDEC features one by one:

 Controlling a maximum of 8 signals(UNO) or 30 signals (MEGA) per Arduino.
or

 A maximum of 16 leds (UNO) or 59 leds (MEGA)
 A signal may contain up to 8 leds. Parallel connected leds count for one.
 A signal can have up to 10 different aspects
 A signal can be configured manually. For each aspect and for each led you can specify

its action: on , off or flashing.
In this way you can configure almost all signals in the world.

 Support of Dutch ‘P-signals’ (red<->green change with automatic intermediate
yellow)

 Contains a database with the most important signals. You don’t need to configure
these signals. Just select a signal number from the database.

 Configurable on/off times when flashing.
 Configurable fading time per signal(100-800 ms.)
 Configurable maximum brightness per led. So no more to bright or to weak leds and

experimenting with resistors.
 Suitable for signals with common anode and common cathode.
 Interactive, via screen and keyboard, configuring of the signals. That is independent of

your DCC Central and no puzzling with complex CV’s.
 No need to use the Arduino IDE (development environment)
 Assign a random DCC base address (1-2000) for each signal.
 One DCC address controls two different aspects.
 Subsequent addresses are used for more aspects.
 A test option. All signals are showed
 A documentation option shows all settings.
 Assign an alpha numeric administrative note to a signal
 A reset option that clears all settings from memory.
 Option to correct the address offset of a Roco central (MM, z/Z21
 A help options shows all commands.
 A log option in which all configuration sessions are saved.
 Independent of used bus structure (S88, LocoNet, XpressNet)

But in operation mode it uses only DCC.

4

What do you need?

The hardware
Here you have a number of options.
Option 1: An Arduino UNO or Arduino Mega2560

An Arduino is a microcomputer with a lot of (20 or 69) connections. These are called ports.
These are numbered on the circuit board.

For the ARSIGDEC decoder we use a
maximum of 16 or 65 of these ports. The
LEDs (with a 150 ohm resistor) can be
connected directly to these ports.
An Arduino port has an output voltage of 0 or
5 volts and can process a maximum of 40 mA.

On the left you can see the USB connection.
The Arduino is powered by this USB cable.
The USB connection is needed to copy the
program to the Arduino. It is also needed to
communicate with the computer when
configuring.
If no USB cable is connected, the power
supply must come from the other black
socket (power jack). A 7-12 Volt DC voltage
source can be connected to this jack. The
Arduino itself makes this a stabilized 5 volt
voltage. Both connections can be used
simultaneously.

On the Arduino we also see some ports with the text Power. Here we find two 5 volt ports (output), two GND
connections and a Vin port. Instead of the power jack, the Vin port can also be used to feed the Arduino. Do not
connect 5V to the 5V ports.

DCC circuit
Secondly, a small amount of electronics is needed to make the DCC signal suitable for the Arduino.
The IC 6N137 is a fast optocoupler that transmits the DCC signal to the Arduino.
The necessary 5 volts can be connected directly to a 5V port of the Arduino.
Port 6 of the IC is connected to port 2 of the Arduino.
These extra components have to be soldered on a mounting plate.

USB connection

Ports

9-12 volt power supply

5

For this circuit a shield has been developed for this circuit.
The power supply for the Arduino can also be placed on
this shield.
The board also contains a 5V power supply (max. 1 Amp)
that can be used to power signals.
For the MEGA this shield is mandatory.

This board can be ordered with the order form on:
www.Arcomora.com/order.
If not in stock, the delivery time can be a few weeks.
You also have to buy an Arduino yourself.

Option 2: The DCCNext decoder

Completely new is the DCCNext decoder.
This decoder integrates an Arduino processor
(ATMEGA328P) with a power supply and the DCC circuit
and is therefore a combination of an Arduino UNO and the
DCC shield.

A separate USB interface (CH340) provides the connection
to the PC.

.

This decoder contains 16 screw terminals to which
signals can be connected directly.
The presence of a DCC signal is made visible with a
LED, of the Arduino.

This manual is based on the port numbers of the
DCCNext.

More information: www.Arcomora.com/DCCNext.

This DCCNext can be ordered with
the order form on:
www.Arcomora.com/reservation.

An important difference with the DCC shield is the use
of port numbers 1 to 16 instead of the pin numbers.

6

Software

Of course, software is also required.

1. During the software installation, the ARSIGDEC program is placed on your PC as a pre-compiled

binary file: ARSIGDEC.hex (UNO) and ARSIGDECM.hex (MEGA)

2. To get this on the Arduino you need to upload the programs. This means that ARSIGDEC is

transferred from your PC to the Arduino via the USB cable. This upload is done automatically with a

shortcut on the desktop.

3. A separate 'terminal emulator' is used for communication with ARSIGDEC. (Putty.exe) This is also

started with a shortcut. This allows output of the program running on the Arduino to be displayed

and also input from your keyboard to ARSIGDEC can be sent.

4. In addition, drivers are required. If you have already installed the Arduino IDE (Integrated

Development Environment) you probably already have one. For Chinese clone Arduino's you need

special drivers, the so-called CH340 driver.

All these four components are placed on your PC in a single installation.

Just click and GO!

See the installation manual for this.

DOWNLOAD HERE THE ARSIGDEC SOFTWARE

7

Connection sample ARSIGDEC

Signals can be connected directly to the shield or the DCCNext with a low ballast resistance.

Many factory signals already contain a resistor. These are usually too large because they are intended

for 16V.

Remove these resistors as well as any existing diode. Replace the resistors with values of 150-220 ohms.

The brightness can be adjusted with Arsigdec.

On both the shield and the DCCNext you can feed the LEDs with the 5V output.

8

Configuring your ArSigDec
After the software is installed properly you can start to configure the Arsigdec.
Click on the shortcut Arsigdec.
At the very first time you start Arsigdec, the drivers will be bound to the USB port to which the Arduino is
connected.

Please Note:

 Every numeric input must be closed with <enter>.

 Only one-character commands don’t require an <enter>

 For most inputs the current value does not change with only <enter>.
The current value is shown between brackets.

 In configuration mode the yellow led on the DCC shield (or the built-in led on pin 13) is always on.

 In operation mode this led is off.

 Turn on the Numlock key on the numeric keypad.

 You may use lower and upper characters for commands.

 Use ONLY backspace key to correct a numeric input.

A command can now be entered. The very first time you start the ARSIGDEC, or after a full reset, you have to
enter a number of default settings including an administrative number for this ARSIGDEC. This number identifies
the decoder.
These are the default values as they can be changed with the I-command. See at I-command.
At each start of the configuration an overview of the configuration will be shown automatically.
You can change these settings later with the I-command.

NOTE: Turn off the function Railcom/Rail communication in the z21!

For configuring with ROCRAIL see: www.youtube.com/watch?v=dic4zqEXa8o=dic4zqEXa8o

The commands
There are two types of commands

- General commands
- Signal specific commands

That’s why the configuration has two
modes.
By entering a ‘?’ you see the available
commands for the current configuration
mode.
The configuration mode always starts
with the general command mode.
You only see the commands that belong
to the current state.
Each command consists of a single letter and does NOT need to be closed with <enter>.
The letters are based on the English description of the function of each command.
Some general commands can also be given in the signal state.
After booting in the configuration state you can only enter general commands.
Signal commands can be entered after the M-command. You will then first be asked to enter a signal to be
modified.

