

Multifunctional ARduino dcc DECoder

the Multifunctional

DCC decoder for servo’s

and accessory’s

with DCCNext

for everybody

Author: Nico Teering

December 2021

Mardec version: 7.0

Document version: 7.0UK

Info: Info@Arcomora.com

www.Arcomora.com/Mardec/

mailto:Info@Arcomora.com
http://www.arcomora.com/Mardec/

Introduction
To keep the automation of your layout simple and cheap I created a program called Mardec for a multifunctional DCC decoder

based on an Arduino processor.

With MARDEC servo's for turnouts as well as other accessories can be operated.

With MARDEC it is no longer necessary to write only one letter of Arduino code yourself.

As with any other DCC decoder, the MARDEC still needs to be configured.

This configuration is usually wrongly called programming. To avoid speech confusion we use the term programming to write the

Arduino code and the term configure to run the program. In this configuration the servo's and accessories are set.

The MARDEC works in two different states .

In the configuration mode, the servos/accessories can be set by one-letter commands from the

keyboard. The MARDEC communicates with the computer via a USB cable. No DCC signals are needed for this.

By means of a specific command ('E') the MARDEC switches to the operating state. (also called normal mode)

In the operating state, the servos and accessories are controlled with the DCC signal. No USB cable is needed anymore.

The installation of all software is very user-friendly. All required software is installed at once. Uploading the program to the

decoder is also almost completely automatic.

See the installation manual for more information.

The decoder
For the decoder itself you have three options:

- An Arduino UNO or MEGA with the DCC/Power shield as described on https://www.arcomora.com/mardec/.

- An Arduino NANO with a homemade DCC circuit.

- The DCCNext decoder as described on https://www.arcomora.com/dccnext.

Mardec version 6 is made for the DCCNext but can also be used on an Arduino with DCC/Power shield.

ArCoMoRa
Mardec is part of the ArCoMoRa concept. It stands for Arduino Controlled Model Railway. The Arsigdec, a DCC signal decoder, is

also part of this concept, as is the Arloco, a configurable LocoNet feedback system with Arduino.

See also: https://www.Arcomora.com

New in version 7
In this version the DCC_library of Mynabay has been replaced by the NMRA library.

With thanks to Karst Drenth (Drenth Design & Consultancy)

This change solves the problem with Railcom.

https://www.arcomora.com/mardec/
https://www.arcomora.com/dccnext
http://www.arcomora.com/

All MARDEC options at a glance
The MARDEC decoder has the following options:

• Driving a maximum of 12 servos without frogpoint polarization or a maximum of 8 servos with frogpoint polarization.

The polarization is achieved through an external relay.

• Control of accessories in 9 ways, including control of alternating coils and variable PWM control.

• An Arduino port can be configured as input. This allows a servo / accessory on a different port to be switched on or off.

• Interactive, via screen and keyboard, configuring the inputs, servos and accessories. This is completely independent of

the DCC central unit used. The Arduino software is NOT required for this.

• The start and end angles of each servo can be set precisely to the degree.

• Assign any DCC address (1-2000) to each servo or accessory. So not necessarily consecutive addresses.

• Each servo (max. 8) can be coupled with a relay for frogpoint polarization. When the servo is turned, this relay will be

switched halfway through the rotation.

• Each servo (max. 5) can be coupled with two relays for frogpoint polarization. This results in an even more reliable

switchover of the frogpoint.

• A different rotation speed can be set for each servo. This makes it easier for servos to be used for other purposes than

just turnouts.

• A test option. Hereby the switching of the DCC-signal (0→ and 1→0) can be simulated.

• Servo’s can bounce at the end of the rotation.

• Setting "inversion" for servos. With this, it is possible to set whether a switch should be set straight ahead or deflecting

in the case of a rotation to the smallest corner. This is necessary because the servo can be mounted in several ways.

• A documentation option that shows all settings.

• Assigning an administrative code to each servo / accessory / input.

• A reset option where all settings are deleted from the memory of the MARDEC.

• Adjustable default speed of the servo arm (5-100 ms per degree).

• Return to configuration mode by connecting USB cable and entering "C" command.

• Possibility of correcting the address offset at Roco controllers (MM, z / Z21)

• Accessories have the following options:

1. Single steady. Here, one port is permanently high or low depending on the control.

2. Double steady. Same as single steady, but a second port has the "reverse" value.

3. Single flashing. A port goes alternately high (on) and low (off). The "on" time and the "off time" can be set separately.

4. Double flashing. Same as single double, but a second port has the "reverse" value.

5. Single one shot. Here a gate goes as high for a short adjustable time as the control goes from low to high. It can also

be used to switch a servo / accessory on another port at the end of the pulse.

6. Double one shot. A port is set, for a short adjustable time, as "high" as the control goes from low to high and another

port if it goes from high to low. This means that alternating coils can also be controlled.

7. Analog (PWM = Pulse Width Modulation) control. In this case, in a separately adjustable time, a gate goes from 0 to

an adjustable maximum (max. 255) if the control goes from low to high and then back to 0 in a separately adjustable

time if the control goes from high to low.

8. Flicker mode. With this you can make a connected LED flicker. With suitable LEDs you can, for example, simulate fire

or a welding light.

9. Random. This allows you to constantly switch a connected accessorie on and off. The on and off times are randomly

determined between two adjustable limits (20 ms.-600 sec..) You can also set a fxed on or off time.

• A help option shows all commands for configuring.

• A log option that saves all configuration sessions.

• Independent of the used bus structure (LocoNet, S88 and the like). However, the control is only with DCC.

What do you need?

The hardware
You have a number of options here.

Option 1: An Arduino UNO, Arduino Mega2560 or Arduino Nano

An Arduino is a microcomputer with a lot of connections. These are called ports. They are numbered on the printed circuit board.

We use a maximum of 16 of these ports for the MARDEC decoder. Servos, relay modules (see below) and LEDs (with resistor) can

be directly connected to these ports.

An Arduino port has an output voltage 0 or 5 volts and

can process a maximum of 40 mA. For accessories that

require more power (such as motors, alternating coils

and LED strips) an additional amplification stage is

required.

For analogue applications there are 4 ports on which a

block voltage can be set with a variable pulse width.

On the left you see the USB connection. The Arduino is

powered by this USB cable.

The USB connection is required to copy the program to

the Arduino. He is also needed to communicate with

the computer when configuring.

If no USB cable is connected, the power must come via

the other black connection socket (power jack). A

voltage source of 7-16 Volt DC can be connected to

this. The Arduino turns this into a stabilized 5 volt

voltage. Both connections can be used at the same

time.

On the Arduino we also see a number of ports with the text Power. Here we find two 5 volt ports (output), two GND connections

and a Vin port. Instead of the power jack, the Vin port can also be used to provide food to the Arduino. Do not connect 5V to the

5V ports.

DCC circuit
Secondly, a little bit of electronics is needed to make the DCC signal suitable for the Arduino.

The IC 6N137 is a fast optocoupler that transmits the DCC signal to the Arduino

The required 5 volts can be connected directly to a 5V port on the Arduino.

Port 6 of the IC is connected to port 2 of the Arduino.

You have to solder these extra components yourself on a mounting board.

USB connection

Connection ports

7-16 volt power

DCC/Powershield
An add-on board (shield) has also been developed for this circuit. The power supply for the Arduino is also placed on this shield.

The shield can be powered by an external power supply or by DCC.

The pins of the Arduino are numbered 0 to 13 and A0 to A5. Mardec uses 16 pins that are numbered as ports 1 through 16 as

also indicated on the shield.

This print can be ordered with the order form on:

http://www.Arcomora.com/order.

If not in stock, the delivery time can be a number of weeks. You also

have to purchase an Arduino yourself

Option 2: The DCCNext decoder
Completely new is the DCCNext decoder.

This decoder integrates an Arduino processor (ATMEGA328P) with a

power supply and a DCC circuit and is therefore a combination of an

Arduino UNO and the DCC shield.

A separate USB interface (CH340) provides the connection to the PC.

This decoder can be equipped with both screw terminals and Dupont

ports. A servo can be connected directly to the ports.

A separate 5V servo power supply is also provided for this.

The presence of a DCC signal is made visible with a LED.

An important difference with the DCC shield is the use of the port

numbers 1 to 16 instead of the port numbers of the Arduino (3 to 19).

This manual assumes the port numbers of the DCCNext.

More info: http://www.Arcomora.com/DCCNext.

This DCCNext can be ordered with the order form on:

www.Arcomora.com/order.

http://www.arcomora.com/order
http://www.arcomora.com/DCCNext
http://www.arcomora.com/order-2

Important:

Mardec 4 can also be used on the DCCNext.

Mardec 5 and 6 can also be used with the DCC shield.

In both cases the conversion table below applies:

Mardec 4
Pin

Mardec 5/6/7
Port

Mardec 4
Pin(Mega)

Mardec 5/6/7
Port

3 1 11 9

4 2 12 10

5 3 14(54) 11

6 4 15(55) 12

7 5 16(56) 13

8 6 17(57) 14

9 7 18(58) 15

10 8 19(59) 16

Mardec 5, 6 and 7 uses a completely changed data structure for storing the configuration.

Mardec 4 can therefore NOT be updated to version 5 ,6 or 7.

If you replace Mardec 4 with Mardec 7 you have to reconfigure everything. Therefore, first make a screenshot of the

current configuration before you install version 7 over version 4.

You can install Mardec 6 and 7 over Mardec 5.

Relay
For the frogpoint polarization, or any other application,

any relay can in principle be used.

To this end, an Arduinoport can switch a relay in the usual

manner by means of a transistor.

The ready-made relay modules are cheaper and easier.

These are very suitable for direct control from an Arduino.

They contain two independent relay circuits with an

indication LED and an optocoupler and are also available

with 4 or 8 relays.

They can be powered directly from the Arduino, but it is

strongly recommended to use an external 5V power

supply for this.

MOSFET switch
Switching is also possible with a MOSFET amplifier.

They are suitable for alternating coils and LED strips, among other things.

They can also be used to dim with pulse width modulation (PWM). You can

use a ready-made module for this or solder them yourself on a mounting

PCB.

Suitable MOSFET types include the FQP30N06L and the RFP30N06LE. The

"L" stands for "logic level". This means that these MOSFETS are fully

conductive with a control voltage of 5V and have virtually no resistance

anymore

http://nl.aliexpress.com/item/2-channel-New-2-channel-relay-module-relay-expansion-board-5V-low-level-triggered-2-way/1621152096.html?adminSeq=220634493&shopNumber=1095279
http://nl.aliexpress.com/wholesale?catId=0&initiative_id=SB_20160824000753&SearchText=+IRF520+MOS+Driver+Module

Software
Of course, software is also required:

1) With the software installation, the MARDEC program is placed on your PC as a "pre-compiled" binary file: MARDEC.hex.

2) To get this back on the Arduino you need upload software. MARDEC is thus transferred from your PC to the Arduino via

the USB cable. This upload is done by a script that is started with a shortcut on the desktop.

3) A separate "terminal emulator" is used for communication with MARDEC. (Putty.exe). This too is started via a shortcut.

With this you can display the output of the program running on the Arduino and also input from your keyboard can be

sent to MARDEC.

4) In addition, drivers may also be required. If you have already installed the Arduino IDE (Integrated Development

Environment) you probably already have it. For Chinese clone Arduinos and the DCCNext you need special drivers, the

so-called CH340 driver.

All these four components are put on your PC in a single installation.

See the installation manual for this.

DOWNLOAD HIER DE ARCOMORA SOFTWARE

https://www.arcomora.com/wp-content/uploads/2021/06/ArCoMoRa.zip

Some examples for

connecting various

accessories

Configuring Mardec
If all software is installed correctly and the Arduino is connected to your PC you can now configure Mardec.

To do so click on the shortcut Configure Mardec.

If you do this for the very first time with your first Arduino, the USB drivers for the Arduino will be activated followed by the upload of

Mardec and the start of Putty. Putty is a terminal emulator for the communication between the Arduino and your PC. (see also

installation manual).

Mardec uses two different modes. Configuration mode and operation mode. By default it starts up in configuration mode. But when

restarted in operation mode it will start up in operation mode again.

Please Note:

• Every numeric input must be ended with <enter>.

• Only one-character commands don’t require an <enter>

• For most inputs the current value does not change with only <enter>. The current value is shown between brackets.

• In configuration mode the status led on the DCC shield or the DCCNext is always on.

• In operation mode this led is off.

• Turn on the Numlock key on the numeric keypad.

• You may use lower and upper characters for commands.

• Use ONLY backspace key to correct an input.

The first time you start configuration mode or after a full reset (with R-Command) you have to enter some basic settings for your

Mardec. The settings and their meaning can be found at the new general I-command

At every start Mardec shows an overview of the current settings.

The Commands
There are four types of commands:

- General commands

- Servo bound commands

- Accessory bound commands

- Input bound commands

Therefore the configuration mode has four different states.

By entering a ‘?’ you will see a list of the available commands in

the current mode.

At start up the General command state is automatically

activated.

Every command can be entered by a single character without <enter>.

The most important command is ‘P’ (for Port). With the P-command you can define/modify an Arduino port.

General Commands

I-Command
With the I command, some initial settings are reset.

- Administrative number for this MARDEC.

This number identifies the decoder.

- Do you use a Roco Multimaus, z21 or Z21?

In this case the MARDEC will automatically make an

address correction. (default = No)

- The standard rotation speed of the servos. This applies

to newly added servos.

- Normally a servo is "disconnected" (= detached) from

the Arduino after reaching the end position. This is to

prevent jittering. This allows the servo to rotate if an

external force is applied. If that twist is a problem, you

can also keep a servo "attached". Mardec will then

immediately correct any deviation.

- Choose how you want Mardec to start up: As last mode, always in configuration mode or always in normal mode

P-Command (Port)
After the P-command a port number will be asked. If the

port is not in use, you must first specify its DCC address and

the required function (servo, accessory or input)

If the port is already in use then its current

configuration is shown and the configuration state

changes to the corresponding port type.

You can use the port numbers 1 to 16

An accessory that uses PWM (mode 7 and 8) is only

available on ports 1, 3, 4 and 9 of an UNO/DCCNext and

on ports 1 upto 8 on a MEGA

Depending on your selection Mardec will be set to the

corresponding command set.

A-Command (Address)
If a port is already configured you can also modify it by

entering its DCC address. Mardec will find the correct port

port number

D-Command (document)
The D-command shows an overview of the configuration of all ports. You may want to make a screen dump of it or copy paste the text

to a file. So you always know what the configuration is of Mardec.

R-Command (Reset)
With the R command all settings can be deleted from the memory

of the Arduino and confirmation is requested twice.

After a reset, the screen will be cleared and the the permanent settings

requested.

E-Command (Exit)
The E-command starts the run time mode.

Now you can control the configured accessories with DCC

signals from your command station.

The statusled is now off. It will flash when a configured DCC-

address passes by.

Also an informative text is shown in the Putty screen.

However you may also close Putty and remove the USB cable.

PLEASE NOTE: The E-command can also be entered while

configuring a port. The settings made will be saved

immediately and the operating state will be started.

Back to Configuration
To return to configuration mode, reconnect the USB cable. Then start the configuration program using the desktop shortcut. This will

restart the Arduino as you can see by the 3 times short flashing of the status LED and then stays off. This will put MARDEC in the

configuration state and the status LED will light up continuously again.

You can also press the 'P' key. Then the configuration mode will start again and the 'P' command will be issued and you will be asked

for a port number.

This is the so-called Quick-Config mode

Important
After each received DCC command, the modified position of a servo or accessory is stored directly in the memory of the Arduino.

When the Arduino is switched on, these stored states are read out again and the servos and accessories are reset as they were when

the Arduino was shut down.

It is possible that a servo moves more or less during the power up.

Because Mardec, with some delay, puts the servos at the last set position, these start-up effects will no longer have any effect.

A possible 'start-up rotation' is restored by Mardec. A good power supply remains a requirement as well as good quality servos (TG9d,

HXT900, ES9051).

Optionally, a ferrite core near the servo can also help.

A resistor of 4k7 between signal and 5V can also help.

Quick Config Mode

In configuratie modus:

Enter command (P/A/D/E/I/R/?): p

Select port number.

Enter value from 1 to 16: 6

DCC 55, Acc.type 3 (S. Flashing), , Not Inv., Time(ms) 200/300

Enter command for Accessory on A55/P6

M/I/R/T/A/D/N/E/enter/?: m Modify

Select mode for this accessory

0=Help. Enter value from 0 to 9 (3):

Mode set to Single Flashing

Enter 'On' time in millisec.

Enter value from 5 to 30000 (200):

'On' time set to 200 msec.

Enter 'Off' time in millisec.

Enter value from 5 to 30000 (300): 400 Off time changed

'Off' time set to 400 msec.

Enter command for Accessory on A55/P6

M/I/R/T/A/D/N/E/enter/?: E Direct E-command

Port settings are saved

Normal mode starts

MARDEC, the Multifunctional ARduino dcc DECoder

UNO version 6.0

 Mardec starting, please wait

Normal mode of MARDEC #1

To configuration: connect USB and press 'C' or 'P'

Accessory on A12/P4 is turned off

Accessory on A55/P6 stopped flashing

Servo on A1/P1 set to 126 degrees

Mardec started

P enter P

configuration mode starts

MARDEC, the Multifunctional ARduino dcc DECoder

UNO version 6.0

Mardec starting, please wait

Configuration mode of MARDEC #1

....

....

Mardec started

Select port number. Automatic P-command

Enter value from 1 to 16: 6

DCC 55, Acc.type 3 (S. Flashing), , Not Inv., Time(ms) 200/400

Enter command for Accessory on A55/P6

M/I/R/T/A/D/N/E/enter/?:

With the Quick Config mode it is possible

to quickly make a change for a port from

the operating state. Entering 'P' starts

config mode and ask for a port number.

After the change, the port does not have

to be saved first by means of <enter>,

but the E command can be given directly.

Input commands
With a port that is configured as an input port you can simulate a DCC signal for a servo or accessory that has the same address as the

input port.

Example:

On port 12 is a single flashing led configured with DCC address 34.

On port 5 is an input configured with also DCC address 34.

By default an input port is kept high by the Arduino. If it is made ‘low’ by e.g. mechanical switch or current sensing print. Mardec

interprets it as a DCC signal for address 34 and the flashing led on port 12 stops (or starts) flashing. If there is also a servo on address

34 it starts rotating.

An input can be activated in three ways.

1) By lowering the input. Nothing happens when the entrance becomes high again. (type Down)

2) By making the entrance high. Nothing happens when the entrance becomes low again. (type Up)

3) By making the input low or high. The accessory or servo "follows" the input signal as if it is controlled by DCC. (type Both)

With this option, for example, a turnout can also be converted by means of a switch.

With options 1 and 2, an input acts as a

momentary switch.

With option 3, an input acts as a changeover

switch. Just like a DCC command.

The activation method is requested when

configuring a port.

An input port can be controlled in various ways.

For example, by a reed switch that switches to

ground or a current detection signal that

becomes low when a train "passes". (Okkie)

An infrared light barrier or just a changeover

switch can also be used.

The attributes at address 34 can of course also

be controlled from a real DCC signal. An

important difference, however, is that nothing happens with an input port if, when using options 1 or 2, it becomes low or high again,

while with a DCC signal it does.

With option 3 (Level), an input works the same as the DCC signal.

PAY ATTENTION:

Remember that if you switch on an accessory from the command station/computer and then switch it off again via an input port, the

command station/computer still "thinks" that the accessory is switched on.

Turning it off again using DCC therefore no longer has any effect.

2- and 3-Commands (second and third address)
Also a second and third address can be connected to an input port. Therefore you can use the 2 and 3 command. By activating the

input port the accessories on these second and third address will also be activated.

For the second and third address you can also specify a delay time up to 25 seconds in steps of

0.1 seconds. The accessory on the 2nd and 3rd address will then activated after the delay time has passed. Both delay times are relative

to the moment of activating the input port.

In the figure below first the accessory on address 20 (‘own’ address) will be activated, when activated by port 5. There is no delay

possible.

After 5 sec. the accessory on address 25 (2nd address) is activated and after 7 sec. the accessory address 26 (3rd address). All

addresses must, of course, be configured on the same Arduino.

If you only want ' delayed ' actions you can configure a dummy address as ' own ' address of the input port. Also you can specify the

address of another input port as a 2nd or 3rd address! This allows you to start a whole range of actions.

http://www.arcomora.com/arloco

In this example, the following happens if port 5 (= input) changes level:

- The accessory on port 1 turns on or off because port 1 has the same address as port 5.

- The servo on port 2 starts running because port 2 has the same address as port 5.

- After 2 seconds, the accessory on port 3 turns on or off because port 3 has the same address as the second address of port 5.

- After 5 seconds the servo on port 4 starts running because port 4 has the same address as the third address of port 5.

If DCC address 236 is sent:

- The accessory on port 1 switches on or off.

- The servo on port 2 starts to turn.

If DCC address 120 is sent: the accessory on port 3 turns on or off.

If DCC address 45 is sent: the servo on port 4 starts running.

A-Command (Address)
The DCC address of the input is set

with the

A-command. You will receive a

warning if the address has already

been assigned to another servo,

accessory or input. By accepting that

you can control multiple

servos/accessories with one address.

N-Command (Note)
With the N-command you can assign an administrative code to the input port.

It has no technical meaning whatsoever and entry is also not required. (4 characters)

T-command (Trigger)
With the T command you can change the trigger

type of the input.

R-Command (Reset)
With the R-command you can reset the port.

After that the port can be reconfigured again.

D-command (Document)
The D command shows an overview of all settings.

<enter or X>-Command
Entering <enter> or X saves the settings of the port and returns to the

general command s A different port can then be selected.

?-Command (Help)
This shows the available input commands s

I-Command (Invert)
With the I command the input is inverted. A high signal on the input is then treated as a low signal and vice versa.

E-Command (Exit)
The E command is used to save the port changes directly and to start the operating state.

It is then not necessary to end the port configuration with <enter> or X first.

To test
There is no separate test function for input ports. However, you can test them by going to operating mode with the Exit command.

By connecting the input port to a gnd port with a cable, you can check whether the linked servo/accessory responds correctly.

Servo commands
A dialog for configuring a servo looks as follows:

A new servo is set to angles of 75(low) and 105(high) degrees.

An existing servo is set to its already configured angles.

In both cases the servo is set to the low position.

- (minus) Command
The ‘-‘ command lowers the angle with one degree. The high

angle must be at least 5 degrees higher than the low angle.

+ (plus) Command
The ‘+‘ commando raises the angle with one degree. The low

angle must at least 5 degrees lower than the high angle

9-Command
With the 9-command you can set a servo to 90 degrees. This

is useful for placing the lever of the servo in the middle. Do

this before mounting the servo under the track.

C-Command (Change)
The C-command lets you toggle between both angles. So you

can set both angles individually by using the – and + key.

I-Command (Invert)
It depends on how the servo is mounted under the track

whether the turnout goes straight at the low angle or high

angle of the servo.

With the I-command you can invert the rotation direction of

the servo.

T-Command (Test)
The T command is the same as the C command.

In addition, the simulated DCC value is shown. However, the

change is done by directly setting the end angle.

S-Command (Speed)
With the S-command you can set the individual speed of a servo

between 5 (fast) and 100 (slow) ms. per degree. The default is 25 ms,

which can be set with the generic S-command.

?-Command (Help)
This shows all available servo commands

N-Command (Note)
I'm sure you've given the turnouts and accessories a code in your track design. This administrative code can also be assigned to the

port using the N command.

It has no technical meaning and entry is not required. You can enter 4 characters.

B-command(Bouncing)
With the B-command you can let the servo arm bounce a couple of

times (0-4) at the end of the rotation.

The angle with which the arm turns back can be adjusted from 1 to

9 degrees.

The angles are entered as a number of maximum 4 digits.

Example 1: A value of 7531 means that the servo first goes back 7

degrees and then back to the end position.

Then the servo goes back 5 degrees and back to the end position.

Then the servo goes back 3 degrees and back to the end position. Finally the servo goes 1 degree back and back to the end position.

Example 2: With a value of 42, the servo will first thunder back 4 degrees and then 2 degrees before it comes to rest.

The bounce angles are separately adjustable for both end positions!

A-Command (Address)
The A command is used to set the DCC address of the servo. You will receive a warning if the address has already been assigned to

another servo, accessory or input. By accepting that you can control multiple servo's/accessories at the same time with one address.

D-command (Document)
The D command shows an overview of all settings.

R-Command (Reset)
With the R-command you can reset the port.

After that the port can be reconfigured again.

<enter or X>-Command
Entering <enter> or X saves the servo settings and returns them to the

general command’s. A different port can then be selected.

E-Command (Exit)
The E command is used to save the port changes directly and to start the operating state.

It is then not necessary to end the port configuration with <enter> or X first.

P-Command (Port)
With the P command, the port changes are saved immediately and a different port number is requested.

You don't have to save the changes with <enter> first. This is useful if you want to change a number of ports.

F-Command (Frog point)
 With the F-command you can

specify a port number to which you

can connect a relay for frog point

polarization.

If you want one relay, enter a '1', or

a '2' for two relays.

(see below)

MARDEC will now ask to which port

you want to connect the first (and

possibly second) relay.

If a frog point is already assigned,

Mardec asks whether you want to

remove the frog point or toggle the

relay inversion.

When changing the turnout, the relay will also be converted exactly halfway through the rotation of the servo. When twisting to the

largest angle, the relay will be energized and when twisting to the smallest angle, the relay will fall off. Because the servo itself also

has an inversion option, you can adjust the position of the turnout and the point polarisation to each other entirely using software.

If there is already a frog port

assigned, MARDEC asks if you

want to remove it (R) or

reverse the inversion of the

relay '1' for first relay, '2' for

second relay).

You can also choose for two relays. The second relay is then used to completely isolate the frog point during the entire rotation.

For two relays you enter a '2'.

Because some relays are low active (are

powered by 0 volts instead of 5 volts) you

can also set for the second relay inversion.

The relay module as described on page 7 is

such a low active relay see also page 27.

Initially the relays are set to no inversion.

By entering the F-command again, you can

invert the relays..

Some relays are ‘active-low’ (activated with

0 Volt instead of 5 V). By toggling the

inversion for relay 2 you can be sure that

the relay is only activated when the servo is

rotating.

TIP: You can of course also connect

something else than a relay to the frog

port; e.g. operate a switch signal or an

indication LED that shows the position of

the switch. You can also use the relay to switch something different then the frog point. Actually, the frog port is simply a port that

becomes high or low at the same time as the switch is switched.

Accessory Functions(=mode)
The data of the DCC signal has only two values (0/1, on/off, low/high, straight/rounded, red/green)

MARDEC realizes several functions with this data.

All the ‘double’ functions specified below(2, 4 and 6) requires the use of a second port. This is the so called ‘buddy’ port.

You can decide for yourself, MARDEC will already ask for it: Set Buddy port. Enter value from 1 to 16:

For a new port MARDEC asks the required function (mode).

For an existing port the current configuration is shown.

The following modes are available:

Enter command (P/A/D/E/l/R/?): P

Select port number.

Enter value from 1 to 16: 1

Port is undefined. First enter DCC address

Set DCC address for port 1

Enter value from 0 to 2000: 1

DCC Address set to 1

Select port type: Accessory(A), Servo(S) or lnput(l): A

Port 1 set as Accessory port.

Select mode for this accessory

0=Help. Enter value from 0 to 9 (9): 0

1 Single steady, 2 Double steady

3 Single flashing, 4 Double flashing

5 Single One shot, 6 Double One shot

7 Analog PWM, 8 Flickering

9 Random On/Off

Mode 1, Single Steady

Enter value from 0 to 9: 1

Mode set to Single Steady

Enter command for Accessory on A1/P1

M/l/R/T/A/D/N/enter/?: M

Mode 2, Double Steady

Select mode for this accessory

0=Help. Enter value from 0 to 9 (1): 2

Set Buddy port. Enter value from 1 to 16: 2

Port 2 set as buddy port

Mode set to Double Steady

Enter command for Accessory on A1/P1

M/l/R/T/A/D/N/enter/?: M

Mode 3, Single Flashing

Select mode for this accessory

0=Help. Enter value from 0 to 9 (2): 3

Mode set to Single Flashing

Enter 'On' time in milliseconds Enter value from 5 to 30000: 200

'On' time set to 200 msec.

Enter 'Off' time in milliseconds Enter value from 5 to 30000: 400

'Off' time set to 400 msec.

Enter command for Accessory on A1/P1

M/l/R/T/A/D/N/enter/?: M

With mode 1 the port ‘follows’ the DCC data

With mode 2 the port ‘follows’ the DCC data

And a second port (buddy por) has the inverted value

In mode 3, the port is alternately high and low as

long as the DCC data is high.

The on and off times are separately adjustable

between 5 and 30,000 ms. (=30 sec.)

Mode 4, Double Flashing

Select mode for this accessory

0=Help. Enter value from 0 to 9 (3): 4

Set Buddy port. Enter value from 1 to 16: 2

Port 2 set as buddy port

Mode set to Double Flashing

Enter 'On' time in milliseconds

Enter value from 5 to 30000:500

'On' time set to 500 msec.

Enter 'Off' time in milliseconds

Enter value from 5 to 30000:100

'Off' time set to l00 msec.

Enter command for Accessory on A1/P1

M/l/R/T/A/D/N/enter/?: M

Mode 5, Single One Shot

Select mode for this accessory

0=Help. Enter value from 0 to 9 (4): 5

Mode set to Single One shot

Enter 'On' time in milliseconds

Enter value from 5 to 30000: 500

'On' time set to 500 msec.

Select trigger moment Up(U), Down(D) or Both(B): D

Trigger set to type Down-Pulse

Enter command for Accessory on A1/P1

M/l/R/T/A/D/N/enter/?: M

Mode 6, Double One Shot

Select mode for this accessory

0=Help. Enter value from 0 to 9 (5): 6

Set Buddy port. Enter value from 1 to 16: 2

Port 2 set as buddy port

Mode set to Double One shot

Enter 'On' time in milliseconds

Enter value from 5 to 30000: 1000

'On' time set to l000 msec.

Mode 4 is the same as single flashing but a

buddy port gets the "reversed" value.

With mode 5, the port becomes high (5-30.000 ms) for a

certain period of time when the DCC data becomes high

(U or B trigger) or low (D or B trigger).

If the address of a single one shot is equal to that of

another servo or accessory, at the end of the pulse, it will

be 'converted' as if a DCC signal had been sent.

Example: At address 12 both a single one shot and a

double flashing are configured. If MARDEC now 'sees'

address 12, both the one shot and the double flashing

will be started. At the end of the pulse, the double

flashing will be switched off again. This allows an

accessory to be activated for a short time (max. 30 sec.).

The double one shot (mode 6) is the same as the single one shot.

However, the double one shot is only started when the DCC data

becomes high.

A buddy port goes high when the DCC data becomes low again.

With this function you can also control alternating coils.

Alternating coils require at least 12 volts and draw a relatively

large current. Therefore you cannot connect them directly to an

Arduino port. This requires an extra amplifier stage.

See the example in the schematic (port 16).

For a turnout, you need two amplifier stages. One for each coil.

The MOSFET modules mentioned on page 10 are suitable for this.

Enter command for Accessory on A1/P1l

M/l/R/T/A/D/N/enter/?: M

Mode 7, Analog PWM

Select mode for this accessory

0=Help. Enter value from 0 to 9 (6): 7

Mode set to Analog PWM value

Set Minimum PWM value for port A1/P1

Enter value from 0 to 255: 5

Minimum PWM value set to 5

Set Maximum PWM value for port A1/P1

Enter value from 5 to 255 (255): 200

Maximum PWM value set to 200

Set Rise time (sec) for PWM port

Enter value from 0 to l000: 60

Rise time set to 60 sec.

Set Fall time (sec) for PWM port

Enter value from 0 to l000: 30

Fall time set to 30 sec.

Enter command for Accessory on A1/P1

M/l/R/T/A/D/N/enter/?: M

Mode 8, Flickering (PWM)

Select mode for this accessory

0=Help. Enter value from 0 to 9 (7): 8

Mode set to Flickering(PWM)

Set Minimum PWM value for port on A1/P1

Enter value from 0 to 255: 2

Minimum PWM value set to 2

Set Maximum PWM value for port on A1/P1

Enter value from 2 to 255 (255): 200

Maximum PWM value set to 200

Enter command for Accessory on Al/Pl

M/l/R/T/A/D/N/enter/?: M

Mode 9, Random aan/uit

Select mode for this accessory

0=Help. Enter value from 0 to 9 (l): 9

Mode set to Random

Fixed on/off time? l=No, 2=0N, 3=0FF

Enter value from l to 3: 2

Fixed 0N time(x0,02 sec) ?

Enter value from l to 30000: 1000

Fixed 0N time set to 20.00 sec.

Set Minimum random time (x0.02 sec)

Enter value from l to 30000: 500

Minimum random time set to l0.00 sec.

Set Maximum random time (x0.02 sec)

Enter value from 500 to 30000: 4000

Maximum random time set to 80.00 sec.

Mode 7: On a number of ports (1,3,4 and 9;

on Mega ports 3 to 10) an Arduino can set a

block voltage of which the pulse width (duty

cycle) can vary from 0 to 100%.

This is realized by 'writing' a value from 0 to

255 to this port. By e.g. connecting a led

and vary the PWM value, this LED can be

dimmed. This can be used for e.g. variable

track lighting such as day/night cycles.

The following can be set for this function:

- the maximum PWM value (min. value - 255)

- the minimum PWM value (0 - max value)

- the rise time (0-1000 sec)

- the fall time (0-1000 sec)

With three of these accessories you can, for example, control an

RGB LED strip. Also a led strip needs an amplifier stage in the

form of a MOSFET transistor.

With mode 8 you can flicker a connected led with an adjustable

minimum and maximum brightness.

Every 20 msec a random value is set for the brightness.

By flickering three suitable LEDs in different colors, you can

simulate fire.

It can also be used for e.g. welding light simulation.

PWM is also used and can only be used on ports 1, 3, 4 and 9.

(On Mega ports 3 to 10)

With mode 9, a connected accessory (e.g. an LED) will switch on

and off continuously as long as the DCC data is high. For each on

and off period a time is randomly determined.

The minimum and maximum time can be set between 20

msec. and 600 seconds in 20 msec. increments.

A fixed on/off time or completely random can be chosen.

If a fixed on time is set, the off time is random. If a fixed off time

is set, the on-time is random.

The random function can be used to turn on and off e.g. interior

lighting of houses or street lighting.

With very short times the flickering of a lamp can be simulated.

Accessory Commands

? Command
Shows available options

M-Command (Mode)
With the M command you can choose another function for the

selected port. It will ask for the specific settings of the new function.

You can also use the same function to change the port settings or, in

the case of a double function, to change the buddy port.

R-Command (Reset)
The R command allows you to reset the port.

After that the port can be reconfigured.

D command (Document)
The D command shows an overview of all settings

A-Command(Address)
With the A command you can change the DCC address of the port.

N-Command (Note)
The N command allows you to assign an administrative code to the gate.

It has no technical meaning and entry is not mandatory. (4 characters)

T command (Test)
The T command is identical for all accessory functions.

By repeatedly entering 'T', the DCC signal is simulated and alternately set to 0 and 1.

This allows the connected accessory to be tested for its intended function.

Entering <enter> ends the test and the accessory menu is displayed again.

The E-command can also be entered to go directly to the operating state.

<enter or X>-Command
Entering <enter> or X saves the port settings and returns to the

General commands Another port can then be selected.

E-Command (Exit)
The E command is used to save the gate changes directly and to start the operating state.

It is then not necessary to end the port configuration with <enter> or X first.

P-Command (Port)
With the P command, the port changes are saved immediately and a different port number is requested.

You don't have to save the changes with <enter> first. This is useful if you want to change a number of ports

I-Command (Inversion)
With the I command you can reverse the output of a port if you wish.

The following table shows what inversion means per mode.

Mode 1 Single Steady Mode 2 Double Steady

 DCC Port DCC Port Buddy

Not

Inv

L L
Not Inv

L L H

H H H H L

Inv.
L H

Inv.
L H L

H L H L H

Mode 3 Single Flashing Mode 4 Double Flashing

 DCC Port on Port off DCC Port on Port off Buddy on Buddy off

Not

Inv

L L L
Not Inv

L L L L L

H H: on time L: off time H H: on time L: off time L: off time H: on time

Inv.
L L: off time H: on time

Inv.
L L: off time H: on time H: on time L: off time

H H H H H H H H

Mode 5 Single One Shot Mode 6 Double One Shot

 DCC Port (U) Port (D) Port (B) DCC Port Buddy

Not

Inv

L > H H pulse L H pulse
Not Inv

L > H H pulse L

H > L L H pulse H pulse H > L L H pulse

Inv.
L > H L pulse H pulse L pulse

Inv.
L > H L pulse H pulse

H > L H L pulse L pulse H > L H pulse L pulse

Mode 7 Analog PWM Mode 8 Flickering PWM

 DCC Port DCC Port

Not

Inv

L > H rising
Not Inv

L L

H > L falling H flickering

Inv.
L > H falling

Inv.
L flickering

H > L rising H H

Mode 9 Random on/off Servo

 DCC Fixed On Fixed off No Fixed DCC Angle

Not

Inv

L L L L

Not Inv

L Low

H Fix: H/Ra: L
Fix: L/Ra:

H
Ra. H-L H High

Inv.

L H H H

Inv.

L High

H FFix: L/Ra:
Fix: H/Ra:

L
Ra H-L H Low

 Frog port Frog port

 Angle 1-Relay Servo 2-Relay

Not

Inv

Low L
Not Inv

Rotates H

High H Stopped L

Inv.
Low H

Inv.
Rotates L

High L Stopped H

H = Hoog, High, Hoch, Haute = 5 Volt L = Laag, Low, Niedrig, Bas = 0 Volt

Miscellaneous

Boot up
When starting up the Arduino, the status LED will flash briefly three times. You can see that the Arduino is started.

Mount servos
Use the following procedure to set up a servo.

- Connect the servo to the Arduino and set the angle to 90 degrees with the 9-command.

- Now mount the servo under the track. Do this so that the switch points are about halfway along the tracks.

- Go with the C-command to one of the corners.

- Use the + and - commands to correct the angle.

- Go with the C-command to the other corner.

- Also adjust this.

- With point polarization: check the connection between the point piece and the rails. If wrong then invert adapter relay.

- Check whether the switch position corresponds to the symbol on the control panel / program. If wrong then invert servo.

- Exit with <enter> to save the settings.

Shut down
The control panel (Putty) can be closed at any time. No separate command is available for this.

So use Alt-F4 or click on the familiar cross in the top right-hand corner of the window.

Make sure that you are in the general command state, so that the last changes for a port are saved.

Logging
The entire configuration dialog is logged in the file:

My Documents / Mardec / MARDEC_ <date> _ <time> .log.

In addition, <date> _ <time> is the time of closing.

Document
When you have finished configuring it is wise to record the settings in a document. For this purpose there is the shortcut

Document your MARDEC in the MARDEC folder of the Windows start menu.

This opens an MS Word document that you can fill in. (So requires MS Word on your PC).

Arduino Nano, Pro Mini, Mega2560
You can use a Pro Mini in the same way as the UNO. Of course you can not use the DCC shield.

To upload Mardec to a Nano you must use the Arduino IDE. However, the default boot loader is too large, which means

there is too little memory available for Mardec. However, you can replace the bootloader.

See the document 'fixing the boot loader' at www.arcomora.com/download/

Then you can use the IDE to upload the .INO file.

To upload Mardec to a Mega2560 you must use the tool 'Upload' in the Windows start menu.

You can use the DCC shield for the Mega.

On the MEGA, ports 11 to 16 of the shield are connected to the gates 54 to 59 of the MEGA.

However, Mardec 7.0 will control the ports 54 to 59 on a MEGA as if it were the ports 11 to 16

So you can simply use the screw terminals from 11 to 16 as if the shield was on a UNO.

On a MEGA you MUST use the upload tool for uploading Mardec to the processor.

https://www.arcomora.com/download/

Configure subsequent decoders
After the software has been installed, MARDEC will be automatically loaded onto the Arduino when starting up 'Configure

MARDEC' for the first time.

There is another method for the second and subsequent decoders.

To do this, start the shortcut 'Upload’.

You must use this if you have a MEGA2560. With the standard installation, an upload is always done to an UNO.

You can find this tool and its manual in the Windows start menu in the folder Arcomora.

Adjust com port
The Windows Com port sometimes changes when reconnecting an Arduino.

With the Change COM port tool you can easily adjust the Com port.

You can also find this tool in the Windows start menu

Configuration screen (Putty)
You can adjust the display of the control panel as follows.

1. Click the Configure Putty shortcut.

You can find these in the Windows start menu in the folder

Arcomora

The adjacent screen appears:

2. Click on MARDEC and then on Load.

3. At Session Logging you can adjust the log options.

Note: If you change the filename, the configuration sessions

can not be saved!

4. At Window Appearance / Behavior / Colors you can also

adjust the appearance.

5. If necessary, you can also change the COM port here.

6. Do not change anything to all other settings!

7. Select Session and click Save to save the settings again.

8. Click Open to open the control panel again.

You can also easily change the COM port of an Arduino with the Change COM port program.

You can find this in the Windows start menu, in the folder Arcomora.

Relay modules

If you use the relay modules with optocoupler as mentioned on http:\\www.arcomora.com, it may be important to know

that these are active LOW.

This means that the relay is energized when the voltage on the Arduino port is 0 volts.

There is a standard jumper over the ports Vcc and JDVcc.

You now have two options:

1) Leave the jumper and connect Vcc / JDVcc to external power supply

2) Remove the jumper and:

 - Connect Vcc to an Arduino 5V output

 - Connect JDVcc to external power supply

In this picture you also see that the relay is energized when the Arduino port is LOW.

In any case, you must NOT leave the jumper and connect Vcc / JDVcc to the Arduino.

In that case you also pull the coil current from the Arduino and that is not wise.

http://www.arcomora.com/

Sample configurations

Connecting a turnout with coils and two MOSFETS amplifiers

...

Connecting an RGB ledstrip with MOSFETS amplifiers

Connecting a servo and a double relay to a turnout

Railway crossing

Release Notes version 6

NEW:

• The ‘bouncing’ of servos at the end of the rotation. The servo can thunder up to 4 times with
angles of 1 to 9 degrees. This can be different for both angles.

• The test option for accessories has been changed. Instead of activating the accessory several
times, the T-button can be used to turn the accessory on. This simulates the DCC signal.

• Buddy- and frogpoint ports can be chosen by yourself.
• The menu structure for changing accessories is simplified. Added the E-command; this is a

combination of <enter> (=save) and the General E-command (=start of operating mode).
• The Single one shot can also be activated by a Down and/or an Up pulse.
• The two random functions are merged into one random function with on/off times from 20ms.

to 600 sec.
It is also possible to set a fixed on or off time.

• An input now also has an inverted option.
• An individual port can now also be reset with the R command.

It is therefore no longer necessary to set the address to 0.
• Back to configuration state can now also be done with the P-command.
• The Quick-Config mode. This can be used to quickly make a change for a port.

With ‘P’ the configuration is started and the port number is requested immediately.
After the change you can immediately save the changes with ‘E’ and return to operating mode.

FIX: You can also use servo’s on ports 12 – 16

NOTE: because the storage of the configuration in EEPROM is changed Mardec must be reconfigured
after updating from 4.0 to 6.0

version 7:
The DCC_Library of Mynabay is replaced by the NMRA DCC library.

This solves the Railcom problem.

